Answer:
![(1)/(7)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rnvfjaw96usydd54fgi8fxhjbr62uhf2dv.png)
Explanation:
Given
sunny day speed= s mph
Rainy day speed=s+1 mph
Derek average speed =2.8 miles/hr
s<2.8<s+1
so on sunny day speed must be 2 mph
and on rainy day speed must be 3 mph
![v_(avg)=(distance)/(time\ taken)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zbovc09nqrcwzepfltu98xrbwkyc0j7d22.png)
Let x be the distance traveled in sunny and y be the distance traveled in rainy weather
![2.8=(x+y)/(\frac){x}{2}+(y)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/895umlfcok9jufjqzyqht0lu18pzmw8ypm.png)
Let
![(x)/(y)=z](https://img.qammunity.org/2020/formulas/mathematics/high-school/x5aahb4g1y56mjwdh09qh13xojnmph29k4.png)
![2.8=(z+1)/((z)/(2)+(1)/(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/9n3lzl56nq8go6qyl1ijaqa5msj7urbq7q.png)
![z=(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kntxgyjzgv3hb9xj3h3xqzwcnqkd2tyxrq.png)
Fraction of distance traveled on sunny weather
![(x)/(x+y)=(z)/(z+1)=(1)/(7)](https://img.qammunity.org/2020/formulas/mathematics/high-school/cjzlvlgbi3pmp4tnyq0tp4n19s954vplhe.png)