Answer: 0.031
Explanation:
As considering the given information, we have
![\mu=80](https://img.qammunity.org/2020/formulas/mathematics/college/uvri1p9wjhjhtlxp09a4cvxisx6psgzn96.png)
![\sigma=28](https://img.qammunity.org/2020/formulas/mathematics/college/qe38opveahviaww9xi07u3n3tixq2p5rji.png)
n= 75
Let x be the random variable that represents the price of all routers.
We assume that the price of all routers are normally distributed.
Z-score corresponding to x=74 will be :-
![z=(x-\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/kv4zbzwta1cei225xptycu57ns4dmxgoss.png)
![z=(74-80)/((28)/(√(75)))\\\\=-1.8557687224\approx-1.86](https://img.qammunity.org/2020/formulas/mathematics/college/ijgdw54vtuyg8jg8qldfeh1xdl1nwgr6lt.png)
Using z-value table,
P-value = P(x ≤ -1.86)=1-P(x≤ 1.86)=1-0.9685572=0.0314428≈0.031
Hence, the required probability = 0.031