Answer:
Option B.
Explanation:
The given matrices are
![G=\begin{bmatrix}7&5\\ \:4&3\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o5y6j2x0o1dl4c5c6o9g20qjjenim7ctlu.png)
![H=\begin{bmatrix}-6&-5\\ \:-4&-2\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h21nek89rsuqxp6xs13fo2gn0d36lhx9y6.png)
Two matrices are inverse of each other if product of both matrices is identity matrix, i.e.,
.
![\begin{bmatrix}7&5\\ \:4&3\end{bmatrix}\begin{bmatrix}-6&-5\\ \:-4&-2\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wibwt7ysjl4rd8z0ucuwgaokbhu331js5g.png)
![\begin{bmatrix}7\left(-6\right)+5\left(-4\right)&7\left(-5\right)+5\left(-2\right)\\ 4\left(-6\right)+3\left(-4\right)&4\left(-5\right)+3\left(-2\right)\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5d08av3fbj6m0e79d1kpbaxe2cqh7krejb.png)
![\begin{bmatrix}-62&-45\\ -36&-26\end{bmatrix}\\eq I](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kcw7tobmy8k633ezpdo7rwwzand21lydnl.png)
Matrices G and H are not inverses of each other because GH does not equal I.
Therefore, the correct option is B.