Answer:
![F_(net) =165.87\ N](https://img.qammunity.org/2020/formulas/physics/high-school/4sb8tvu732fgd4pny73h92l5sqol1v6ofm.png)
Step-by-step explanation:
given,
angle of inclination with the horizontal = 8.5°
force of gravity = 1225 N
normal force on car = 1210 N
frictional force = 15.2 N
net force = ?
equating horizontal forces
![F_x = f - mg sin \theta](https://img.qammunity.org/2020/formulas/physics/high-school/akg27m29no5i0cky92e0rdge0nkhxew77v.png)
![F_x = 15.2 - 1225 sin 8.5^0](https://img.qammunity.org/2020/formulas/physics/high-school/hhqbd48phtfc51m9cezcnev83pf5p8igg2.png)
F_x = -165.87 N
equating vertical forces
![F_y = N - mg cos\theta](https://img.qammunity.org/2020/formulas/physics/high-school/vjadup0vf9k3h2s7qu78stdzqnwtwfnrq5.png)
![F_y = 1210 - 1225 cos 8.5^0](https://img.qammunity.org/2020/formulas/physics/high-school/ost7r7qns6567g95g5ncle5vsjsm9v2dzu.png)
F_y = -1.54 N
net force
![F_(net) = √(F_x^2+F_y^2)](https://img.qammunity.org/2020/formulas/physics/high-school/ruiwz8trr4w9d3ghnx9n4pnbmn9na492up.png)
![F_(net) = √(-165.87^2+-1.54^2)](https://img.qammunity.org/2020/formulas/physics/high-school/dt2jrrl52npypdcy35d1veuxgkpnzom3ld.png)
![F_(net) = √(27515)](https://img.qammunity.org/2020/formulas/physics/high-school/wcsfp9m1knevu28tvqxjsmi06ve15eony0.png)
![F_(net) =165.87\ N](https://img.qammunity.org/2020/formulas/physics/high-school/4sb8tvu732fgd4pny73h92l5sqol1v6ofm.png)