Answer:
The third option listed:
![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xc3f8y8y0djvvv4k0assujl3vips1b965t.png)
Explanation:
We start by writing all the numerical factors inside the qubic roots in factor form (and if possible with exponent 3 so as to easily identify what can be extracted from the root):
![7\sqrt[3]{2x} -3\sqrt[3]{16x} -3\sqrt[3]{8x} =\\=7\sqrt[3]{2x} -3\sqrt[3]{2^32x} -3\sqrt[3]{2^3x} =\\=7\sqrt[3]{2x} -3*2\sqrt[3]{2x} -3*2\sqrt[3]{x}=\\=7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/axwej7fzuyvt2l4mdvy806xjut5kzrt4n0.png)
And now we combine all like terms (notice that the only two terms we can combine are the first two, which contain the exact same radical form:
![7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}=\\=\sqrt[3]{2x} -6\sqrt[3]{x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5kgpb08f3vmujke607hdss8zz6hyjigng2.png)
Therefore this is the simplified radical expression:
![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xc3f8y8y0djvvv4k0assujl3vips1b965t.png)