44.1k views
5 votes
Tan^2a-cot^2a = sec^2a (1-cot^2a) prove​

1 Answer

4 votes

Answer:

See explanation

Explanation:

Use the definitions:


\tan \alpha=(\sin \alpha)/(\cos \alpha)\\ \\\cot \alpha=(\cos \alpha)/(\sin \alpha)\\ \\\sec \alpha=(1)/(\cos \alpha)\\ \\\csc \alpha=(1)/(\sin \alpha)\\ \\

Now,


\tan^2\alpha -\cot^2\alpha=(\sin^2\alpha)/(\cos^2\alpha)-(\cos^2\alpha)/(\sin^2\alpha)=(\sin^4\alpha-\cos ^4\alpha)/(\sin^2\alpha\cos ^2\alpha )=\\ \\=((\sin^2\alpha-\cos ^2\alpha)(\sin^2\alpha-\cos ^2\alpha))/(\sin^2\alpha\cos ^2\alpha )=((\sin^2\alpha-\cos ^2\alpha)\cdot 1)/(\sin^2\alpha\cos ^2\alpha )

and


\sec^2\alpha(1-\cot^2\alpha)=(1)/(\cos^2 \alpha)\left(1-(\cos^2\alpha)/(\sin^2\alpha)\right)=(1)/(\cos^2 \alpha)\left((\sin^2\alpha-\cos^2\alpha)/(\sin^2\alpha)\right)=\\ \\=(\sin^2\alpha-\cos ^2\alpha)/(\sin^2\alpha\cos ^2\alpha)

As you can see, left and right parts simplify to the same expression, so left and right parts are the same.

User Srikant
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.