Answer:
![S = -(b)/(a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vpnffb9kjbas4gqt7rwg6kcly9izbvsj2i.png)
Explanation:
Given a second order polynomial expressed by the following equation:
![ax^(2) + bx + c, a\\eq0](https://img.qammunity.org/2020/formulas/mathematics/college/hehsbkn54vbhc1dk9fj06ydcxkdb8u3kw4.png)
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2020/formulas/mathematics/college/gqgs1jlufbyu2szn6hfk3x0kgfh3zspk5c.png)
![x_(2) = (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2020/formulas/mathematics/college/8j76xx69ctg5j4laz9xzxogto0psgkzupg.png)
![\bigtriangleup = b^(2) - 4ac](https://img.qammunity.org/2020/formulas/mathematics/college/a0wzb2mbviaogje9c8w0czfje0vemddpy5.png)
In this problem, the sum S of the solutions of a quadratic equation is:
![S = x_(1) + x_(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fpvx6k6fff76q99gz84eursneeldw8lzch.png)
So
![S = (-b + √(\bigtriangleup))/(2*a) + (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/af11pu1u83weyjgpkcdvg3gw8ishlzg71f.png)
They have the same denominators, so we can keep the denominators and sum the numerators.
![S = (-b + √(\bigtriangleup) - b - √(\bigtriangleup))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6n3azzwefhq9dwwrxq5gnhtqd0u1wxu933.png)
![S = (-2b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xgw1xscyr11uzhjlwxexwz2euoo50popfd.png)
![S = -(b)/(a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vpnffb9kjbas4gqt7rwg6kcly9izbvsj2i.png)