209k views
2 votes
Find all real and complex solutionsa)x²+2x+1=0b)x²+4=0c)9x²-4x-14=0d)8x²+4x+32=0

User Manlio
by
8.4k points

1 Answer

3 votes

Explanation:

a). x²+2x+1=0


\left ( x + 1 \right )^(2)=0

x = -1 , - 1

Therefore the roots are real.

b). x²+4=0

x²= -4

x = 2 , -2

Therefore the roots are real.

c) 9x²-4x-14 =0

x =
\frac{-4\pm \sqrt{-4^(2)-(4* 9* -14)}}{2* 9}

=
(-4\pm √(16+504))/(18)

=
(-4\pm √(520))/(18)

=
(-4\pm 22.8)/(18)

x =
(-4- 22.8)/(18)

= -1.48

x =
(-4+ 22.8)/(18)

= 1.04

Therefore, x = 1.04 , -1.48

Hence the roots are real

d) 8x²+4x+32=0

x =
\frac{-4\pm \sqrt{4^(2)-(4* 8* 32)}}{2* 8}

=
(-4\pm √(16-1024))/(16)

=
(-4\pm √(1008))/(16)

=
(-4\pm 31.7)/(16)

x =
(-4- 31.7)/(16)

= -2.2

x =
(-4+ 31.7)/(16)

= 1.73

Therefore, x = 1.73 , -2.2

Hence the roots are real

User Grant Noe
by
8.0k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories