131k views
4 votes
Solve the equation 3x+x²=-7. Does the number of solutions match the information provided by the discriminant? Explain

User Zack S
by
5.3k points

1 Answer

3 votes

Answer:


-(3)/(2)+(√(19)i)/(2) and
-(3)/(2)-(√(19)i)/(2)

Explanation:


3x+x^2=-7\\\Rightarrow x^2+3x+7=0

Discriminant


D=b^2-4ac\\\Rightarrow D=3^2-4* 7* 1\\\Rightarrow D=-19

If the discriminant is a negative number then the roots of the equation are imaginary


x=(-b\pm \sqrtD)/(2a)\\\Rightarrow x=(-3\pm √(-19))/(2* 1)\\\Rightarrow x=-(3)/(2)\pm (√(19)i)/(2)\\\Rightarrow x=-(3)/(2)+(√(19)i)/(2), x=-(3)/(2)-(√(19)i)/(2)

So, the two solutions are
-(3)/(2)+(√(19)i)/(2) and
-(3)/(2)-(√(19)i)/(2)

User HarlandMason
by
4.8k points