Answer:NO
Explanation:
Given
Quadratic equation
![x^2+2x+5=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/7d4wqwvp3l9ffqg3qqq4qunkk46tm0x014.png)
First we need to check discriminant of equation to know whether roots are real of imaginary
![D=√(b^2-4ac)](https://img.qammunity.org/2020/formulas/physics/high-school/593zrky58mx4i139f2vciwtoi8hzfiapfu.png)
here
a=1, b=2, c=5
![D=√(2^2-4* 1* 5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7mf617x4v6ljt68cxb25m0p311ubxzfjs4.png)
![D=√(16-20)=√(-4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xby10cx9l1ou5swwy0ufknid5yp5qthpeh.png)
thus D<0 therefore roots are imaginary
To verify given roots are roots of equation
sum of roots
![=(-b)/(a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ibh7hx3s2hzg9014o5g5g00xgqhcc7f4t1.png)
Product of roots
![=(c)/(a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/860fgueviasszvbqjq28rphvnlf3epolqp.png)
![-1+2i-1-2i=(-2)/(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/g2lpfrhoang3paknxzagdjbdonn4n1s0ri.png)
-2=-2
L.H.S=R.H.S
Product of roots
![\left ( -1+2i\right )\left ( -1-2i\right )=1+2i-2i+2i^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/pk21tffpw6f0vwbmzxutpw2x05wtqz0p0a.png)
![=1+2i^2=1-2=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/9egnvokvuodfqf9jts2rdq7sdzk4it2bfq.png)
![L.H.S\\eq R.H.S](https://img.qammunity.org/2020/formulas/mathematics/high-school/fw01j2z1k591scgilxlm49q2sjjb0u1wv6.png)
![-1\\eq 5](https://img.qammunity.org/2020/formulas/mathematics/high-school/4vrmjcimb6o245uuezora3ibuxckqryo10.png)
thus given values are not solutions of given equation.