104k views
0 votes
Calculate the wavelength, in nanometers, of the spectral line produced when an electron in a hydrogen atom undergoes the transition from the energy level ????=3n=3 to the level ????=1.

1 Answer

1 vote

Answer:


\lambda=1026.28\ nm

Step-by-step explanation:

The expression for energy is -


E_n=-2.179* 10^(-18)* (1)/(n^2)\ Joules

For transitions:


Energy\ Difference,\ \Delta E= E_f-E_i =-2.179* 10^(-18)((1)/(n_f^2)-(1)/(n_i^2))\ J=2.179* 10^(-18)((1)/(n_i^2) - (1)/(n_f^2))\ J


\Delta E=2.179* 10^(-18)((1)/(n_i^2) - (1)/(n_f^2))\ J

Also,
\Delta E=\frac {h* c}{\lambda}

Where,

h is Plank's constant having value
6.626* 10^(-34)\ Js

c is the speed of light having value
3* 10^8\ m/s

So,


\frac {h* c}{\lambda}=2.179* 10^(-18)(|(1)/(n_i^2) - (1)/(n_f^2)|)\ J


\lambda=\frac {6.626* 10^(-34)* 3* 10^8}{{2.179* 10^(-18)}* (|(1)/(n_i^2) - (1)/(n_f^2)|)}\ m

So,


\lambda=\frac {6.626* 10^(-34)* 3* 10^8}{{2.179* 10^(-18)}* (|(1)/(n_i^2) - (1)/(n_f^2)|)}\ m

Given,
n_i=3\ and\ n_f=1


\lambda=\frac{6.626* 10^(-34)* 3* 10^8}{{2.179* 10^(-18)}* ((1)/(3^2) - (1)/(1^2))}\ m


\lambda=(10^(-26)* \:19.878)/(10^(-18)* \:2.179\left(|(1)/(9)-(1)/(1)\right)|)\ m


\lambda=(19.878)/(10^8* \:2.179\left(|-(8)/(9)\right|))\ m


\lambda=1.02628* 10^(-6)\ m

1 m = 10⁻⁹ nm


\lambda=1026.28\ nm

User Noamtcohen
by
5.4k points