Answer:
The answer is 3/4
Explanation:
Hi, we need to change the base of the logarithm, for that we need to use the following formula.
![Log_(b) (a)=(Ln(a))/(Ln(b))](https://img.qammunity.org/2020/formulas/mathematics/high-school/t2qwnuujazazfqxyd4n1yzpc1atg6ar2fk.png)
In our case, this is:
![Log_(9) (√(27) )=(Ln(√(27) ))/(Ln(9))](https://img.qammunity.org/2020/formulas/mathematics/high-school/urohnsrh8s5iz1geiyrm354o3e2xx2nmmm.png)
Which is the same as:
![\frac{Ln(27)^{(1)/(2) }}{Ln(9)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/a0aek70cfaqr7l1pu2m7xqzv3oh8sa6r1k.png)
Now, let´s solve this using the log properties
![(1)/(2) ((Ln(27))/(Ln(9)) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/45osk9is1e5d9ktmnpjjh9dzxz9g1y8ary.png)
![(1)/(2) ((Ln(9*3))/(Ln(9)) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/qa03xmi1z9rcb8n5nfgwf7kjinak7q5b1t.png)
![(1)/(2) ((Ln(9)+Ln(3))/(Ln(9)) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/jlmfkgm0phu4g0kvvd6mf1a6ll4mdxdrlk.png)
![(1)/(2) ((Ln(9))/(Ln(9))+(Ln(3))/(Ln(9)) )\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/xqfi2bpypy290mn9sl08eu4k18xrcomwl4.png)
We can change 3 for 9^(1/2)
![(1)/(2) ((Ln(9))/(Ln(9))+\frac{Ln(9^{(1)/(2) } )}{Ln(9)} )\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/xqd1wc92rgdkq62dpwsgelx4i86cshqywf.png)
![(1)/(2) ((Ln(9))/(Ln(9))+(Ln(9 ))/(2*Ln(9)) )\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/viwujz8p4t5vy42lkapdoh3ykpeeuqpw1v.png)
Since Ln(9) / Ln(9) =1, we get.
![(1)/(2) (1+(1)/(2) )](https://img.qammunity.org/2020/formulas/mathematics/high-school/x5ou85cqr7zxepygo7zvt23ynqttm4aook.png)
![(1)/(2) ((3)/(2) )=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/k7v4nupzzynecohvhb0srhsoxhmyfbb131.png)
Best of luck.