107k views
5 votes
Write as a single logarithm.
ln(5) + 3/5 ln(32) − ln(4)

1 Answer

3 votes

Answer:


ln(10)

Explanation:

Let's rewrite the expression as a single logarithm using the next propierties:


log(x*y)=log(x)+log(y)\\y*log(x)=log(x^(y) )\\log((x)/(y) )=log(x)-log(y)

So:


ln(5)+ln(32^{(3)/(5) } )-ln(4)

Where:


32^{(3)/(5) }=\sqrt[5]{32^(3) } =\sqrt[5]{32768} =8

Therefore:


ln(5)+ln(8)-ln(4)=ln(5*8)-ln(4)=ln((8*5)/(4))=ln((40)/(4))=ln(10)

User Adonike
by
5.7k points