34.0k views
0 votes
Graph the line given by 3x+4y=25, and the circle given by x²+y²=25.Find all solutions to the system of equations. Verify your result both algebraically and graphically.

User Cowboybkit
by
5.1k points

1 Answer

5 votes

Answer:

(3,4)

Explanation:


3x+4y=25


x^2+y^2=25

From the first equation


x=(25-4y)/(3)

Applying to the second equation


\left((25-4y)/(3)\right)^2+y^2=0\\\Rightarrow (625+16y^2-200y+9y^2)/(9)=25\\\Rightarrow 625+16y^2-200y+9y^2=9* 25\\\Rightarrow 25y^2-200y+625=225\\\Rightarrow 25y^2-200y+400=0\\\Rightarrow y^2-8y+16=0


y_(1,\:2)=(-\left(-8\right)\pm √(\left(-8\right)^2-4\cdot \:1\cdot \:16))/(2\cdot \:1)\\\Rightarrow y=4

y=4.

Point on the circle


x=√(25-16)=3

So, the line will intersect at the point (3,4)

Graph the line given by 3x+4y=25, and the circle given by x²+y²=25.Find all solutions-example-1
User Radzak
by
7.3k points