Answer:
![x=2\\y=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/g6wtt03cw85wawdxx6lir6naatrqv45trl.png)
Explanation:
Let:
![3x+2y=4\hspace{5}(1)\\and\\4x+7y=1\hspace{5}(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/orias0pgpa5vurhh3vuzmuymvu2e550xoc.png)
We need to eliminate one of the variables, so let's use elimination method. First multiply (1) by 4 and (2) by 3:
![4*(1)\equiv\hspace{5}12x+8y=16\\3*(2)\equiv\hspace{5}12y+21y=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/im9tdtjw6505vyw2970at0mhblrql03fm4.png)
Now subtract 3*(2) from 4*(1) in order to eliminate x:
![4*(1)-3*(2)\\12x-12x+8y-21y=16-3\\-13y=13](https://img.qammunity.org/2020/formulas/mathematics/high-school/6rqp8auzo56oup1vsixvww919qn4o4mqpp.png)
Solving for y:
Multiplying both sides by -1/13
![y=-(13)/(13) =-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/jddu9d1el1av9crh3bpzsmopoa2ocjf08x.png)
Finally, replacing the value of y in (1)
![3x+2*(-1)=4](https://img.qammunity.org/2020/formulas/mathematics/high-school/vjvs5ytqcmzw9ytd7eiz6m4y9mol02xbo6.png)
Solving for x:
add 2 to both sides:
![3x=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y6hdpiz64ez4kkmiqy932rlpust1ccwugf.png)
Multiply both sides by 1/3:
![x=(6)/(3) =2](https://img.qammunity.org/2020/formulas/mathematics/high-school/fe8umljyipcji86vpsazwokf180buiynql.png)