Answer:
log₁₀(10³) + log₁₀(10⁴)
= log₁₀( 10³ × 10⁴ )
= log₁₀( 10³⁺⁴)
= log₁₀( 10⁷)
Explanation:
Given:
log₁₀(10³) + log₁₀(10⁴) = log₁₀(10⁷)
Now,
we know the property of log function that
log(A) + log(B) = log(AB)
therefore,
applying the above property on the LHS, we get
log₁₀(10³) + log₁₀(10⁴) = log₁₀( 10³ × 10⁴ )
also,
xᵃ + xᵇ = xᵃ⁺ᵇ
therefore,
log₁₀( 10³ × 10⁴ ) = log₁₀( 10³⁺⁴)
= log₁₀( 10⁷)
Hence,
LHS = RHS
Hence proved