Answer:
x² + y² = 1
Explanation:
Hi there!
We two functions of t
x = 2t/(1 + t²)
y = (1 - t²) / (1 + t²)
First, let´s square x:
x² = [2t/(1 + t²)]²
Apply distributive property
x² = (2t)²/(1+t²)²
x² = 4t²/(1+t²)(1+t²)
Apply distributive property
x² = 4t² /(1 + 2t² + t⁴)
Now let´s square y:
y² = [(1 - t²) / (1 + t²)]²
Apply distributive property
y² = (1 - t²)² / (1 + t²)²
y² = (1 - t²)(1 - t²) / (1 + t²)(1 + t²)
Apply distributive property
y² = (1 - 2t² + t⁴) / ( 1 + 2t² + t⁴)
x² + y² = [4t² /(1 + 2t² + t⁴)] + [(1 - 2t² + t⁴) / ( 1 + 2t² + t⁴)]
Since the denominators are equal, we have to sum the numerators
x² + y² = (4t² + 1 - 2t² + t⁴)/ (1 + 2t² + t⁴)
x² + y² = (1 + 2t² + t⁴) / (1 + 2t² + t⁴)
x² + y² = 1
Then, x² + y² = 1 and therefore does not depend on the value of t