158k views
4 votes
Simplify the following rational expression : ((x²y)²(xy)³z²)/((xy²)²yz).

1 Answer

2 votes

Answer:


((x^2y)^2(xy)^3z^2))/(((xy^2)^2yz)) = x⁵z

Explanation:

Expression given in the question:


((x^2y)^2(xy)^3z^2))/(((xy^2)^2yz))

now,

when the power is applied to the number with power, the power of the number gets multiplied i.e

(Xᵃ)ᵇ = Xᵃᵇ

The number having same base when multiplied together, the powers of the numbers gets added

Xᵃ × Xᵇ = Xᵃ⁺ᵇ

and,

The number having same base are when divided , the powers of the numbers gets subtracted


(X^a)/(X^b) = Xᵃ⁻ᵇ

thus using the above property, we get


\frac{(x^(2)*2}y^2)(x^3y^3)z^2)}{((x^2y^(2*2))yz)}

or


((x^(4)y^2)(x^3y^3)z^2))/(((x^2y^(4))yz))

or


((x^(4)x^3y^2y^3)z^2))/((x^2y^(4)yz))

or


((x^(4+3)y^(2+3))z^2))/((x^2y^(4+1)z))

or


((x^(7)y^(5))z^2))/((x^2y^(5)z))

or


(x^(7-2)y^(5-5))z^(2-1))

or


(x^(5)y^(0))z^(1))

or

⇒ x⁵z

User Sydney
by
4.8k points