Answer:
So in standard form equation will be
Explanation:
We have given expression
![(x^2-5x+6)/(x-3)+(x^3-1)/(x-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ilnc8nef9jtsojkv9hqekz380j8l7tieu2.png)
Let first we solve first part of the expression
So
![(x^2-5x+6)/(x-3)=(x^2-3x-2x+6)/(x-3)=((x-3)(x-2))/(x-3)=x-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/sbaaox6dljnltzr2hlmybgiytbtv9rf72x.png)
Now second part
![(x^3-1)/(x-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qn5bsyfvpch45usbkyurcidlmwfr1llbpz.png)
We know the algebraic identity
![a^3-b^3=(a-b)(a^2+ab+b^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rmxtxigy0fg25cacrwkyxbclqxg41anyca.png)
So by using this identity
![(x^3-1)/(x-1)=((x-1)(x^2+x+1))/(x-1)=x^2+x+1](https://img.qammunity.org/2020/formulas/mathematics/high-school/sepgrd48fxkxwofk3x4eegya2nglwdrcqp.png)
Now adding first and second part
![x-2+x^2+x+1=x^2+2x-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/zt3zkgg9kf1nk693ar7vpkrkz9vqpyfl41.png)
So in standard form equation will be