120k views
2 votes
Create a table to find the third differences for the polynomial s^3 − s^2 +s for integer values of ss from −3 to 3.

User MarioVW
by
4.9k points

1 Answer

5 votes

Explanation:


f(s)=s^3-s^2

at s = -3


f(-3)=-3^3-(-3)^2=18

at s = -2


f(-2)=-2^3-(-2)^2\\\Rightarrow f(-2)=-12

at s = -1


f(-1)=-1^3-(-1)^2\\\Rightarrow f(-1)=-2

at s = 0


f(0)=0^3-0^2\\\Rightarrow f(0)=0

at s = 1


f(1)=1^3-1^2\\\Rightarrow f(1)=0

at s = 2


f(2)=2^3-2^2\\\Rightarrow f(2)=4

at s = 3


f(3)=3^3-3^2\\\Rightarrow f(3)=18

First difference


f(-2')=f(-2)-f(-3)=-12-18=-30


f(-1')=f(-1)-f(-2')=-2--12=10


f(0')=f(0)-f(-1)=0--2=2


f(1')=f(1)-f(0)=0-0=0


f(2')=f(2)-f(1)=4-0=4


f(3')=f(3)-f(2)=18-4=14

Second difference


f(-1'')=f(-1')-f(-2')=10--30=40


f(0'')=f(0')-f(-1')=-8-40=-48


f(1'')=f(1')-f(0')=-2--8=6


f(2'')=f(2')-f(1')=14-4=10

Third difference


f(0'')-f(-1'')=-8-40=48


f(1'')-f(0'')=-2--8=6


f(2'')-f(1'')=4--2=6


f(2'')-f(1'')=10-4=6

18 -12 -2 0 0 4 18

-30 10 2 0 4 14

40 -8 -2 4 10

-48 6 6 6

User Tony Barsotti
by
4.8k points