Answer:
![2.72\cdot 10^(-3) m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/70eugrn95qmewp7bk9wx5bi6i1ekms2cbz.png)
Step-by-step explanation:
Let's start by calculating the angular velocity of the Moon. We know that the period is:
![T=27.3 d \cdot 24 \cdot 60 \cdot 60 =2.36\cdot 10^6 s](https://img.qammunity.org/2020/formulas/physics/middle-school/dt458fp4us2957103d17b8gqniv71e77sk.png)
So now we can calculate its angular velocity:
![\omega=(2\pi)/(T)=(2\pi)/((2.36\cdot 10^6))=2.66 \cdot 10^(-6) rad/s](https://img.qammunity.org/2020/formulas/physics/middle-school/l0ip794pc9ynul8ckgl9ouerwzymbkvj1g.png)
The centripetal acceleration is given by
![a=\omega^2 r](https://img.qammunity.org/2020/formulas/physics/high-school/58cpxrctl3ukbbch8sh8guvsynfbmcis1b.png)
where
![\omega=2.66\cdot 10^(-6)rad/s](https://img.qammunity.org/2020/formulas/physics/middle-school/gzy8ptvi4baad59d0o96up0a08cg7nd9yt.png)
is the radius of the orbit
Substituting,
![a=(2.66\cdot 10^(-6))^2(3.84\cdot 10^8)=2.72\cdot 10^(-3) m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/gqiv824dnxfjcwsx9ubdd3i82ultdp2m2e.png)