Answer:
![x \approx 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/umfeh6omo9jptr5w8z0u91nvzqqwlikic4.png)
Explanation:
The given equation is
![3^(x)-4=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jhfii3yfj07po0lehxegqgor1az42ahojy.png)
First, we move all constant terms to one side
![3^(x)=6+4\\ 3^(x)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qzpmns23gc1reedesul4d83ye9tstxrn1i.png)
Observe that the bases are different, so first, we rewrite the expression as logarithm
![x=log_(3)(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a5op7dkzaxtilfgcdc91zax0yzjonh8w2d.png)
But, we need a logarithm with base 10, so we apply the following property
![log_(a)(b)=(log(b))/(log(a))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/19j40gwmkbs9u2zlnuc7iwp6fxnhs3gvw3.png)
![x=(log(10))/(log(3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8o91h41qo4t1455zb52gnxzw6phrv3mpw7.png)
But,
![log(10)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ou57sfp74y18yiddumf7jdieg8vudk62pw.png)
So,
![x=(1)/(log(3)) \approx (1)/(0.50) \approx 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mpxsbjrr0wta34vejd8wlkdnp4jo9wxktw.png)