Answer:
B. 12
Explanation:
✔️Find the value of x
The side lengths of two similar triangles are always proportional.
Given that ∆ABC ~ ∆LMN, therefore:
![(AB)/(LM) = (AC)/(LN)](https://img.qammunity.org/2022/formulas/mathematics/college/hthzpdggc5e4mpupszaza9iqt0il9i7mdp.png)
AB = 5
LM = 10
AC = x + 5
LN = 3x + 3
Plug in the values
![(5)/(10) = (x + 5)/(3x + 3)](https://img.qammunity.org/2022/formulas/mathematics/college/681ci36k7ltvlm2rladeep9v2he0hmn7zv.png)
Cross multiply
![5(3x + 3) = 10(x + 5)](https://img.qammunity.org/2022/formulas/mathematics/college/v8nz89a4nvqgheo0kucvx7g6grsjrey6bx.png)
(distributive property)
Collect like terms
Divide both sides by 5
x = 7
✔️Find AC
AC = x + 5
Plug in the value of x
AC = 7 + 5
AC = 12