Answer:
DIAMETER = 9.797 m
POWER =
![\dot W = 28.6 kW](https://img.qammunity.org/2020/formulas/engineering/college/84m509n4u4tjo37k3mff7vjsi4shvhj2xh.png)
Step-by-step explanation:
Given data:
circular windmill diamter D1 = 8m
v1 = 12 m/s
wind speed = 8 m/s
we know that specific volume is given as
![v =(RT)/(P)](https://img.qammunity.org/2020/formulas/engineering/college/44g61evtstgbokbmzsgc61vnqc1hbwwd5j.png)
where v is specific volume of air
considering air pressure is 100 kPa and temperature 20 degree celcius
![v = (0.287* 293)/(100)](https://img.qammunity.org/2020/formulas/engineering/college/hpzejtuyotxnhb895f5ced94e4gpff818j.png)
v = 0.8409 m^3/ kg
from continuity equation
![A_1 V_1 = A_2 V_2](https://img.qammunity.org/2020/formulas/engineering/college/i8d2la5vzonq1s0v3989wduhfdzh6kf1d4.png)
![(\pi)/(4)D_1^2 V_1 = (\pi)/(4)D_1^2 V_2](https://img.qammunity.org/2020/formulas/engineering/college/jy75zy067wfyv8e95p1mhz5g0aqjvb7gzi.png)
![D_2 = D_1 \sqrt{(V_1)/(V_2)}](https://img.qammunity.org/2020/formulas/engineering/college/em1uj7ltjgzpf5orc72an66ntp0acuc9ku.png)
![D_2 = 8 * \sqrt{(12)/(8)}](https://img.qammunity.org/2020/formulas/engineering/college/9lvjnljlie9r3x9alckbqde8ao7zx5mpdi.png)
![D_2 = 9.797 m](https://img.qammunity.org/2020/formulas/engineering/college/pn9amwb4q508p5oaneabhmivqnso12d6qk.png)
mass flow rate is given as
![\dot m = (A_1 V_1)/(v) = (\pi 8^2* 12)/(4* 0.8049)](https://img.qammunity.org/2020/formulas/engineering/college/jz5f0eqeu48pcm3lcb7vj5xvmytlrc3yws.png)
![\dot m = 717.309 kg/s](https://img.qammunity.org/2020/formulas/engineering/college/gi6mru8owx320lj9p0vejqwjqzg928uu5x.png)
the power produced
![\dot W = \dot m ( V_1^2 - V_2^2)/(2) = 717.3009 [(12^2 - 8^2)/(2) * (1 kJ/kg)/(1000 m^2/s^2)]](https://img.qammunity.org/2020/formulas/engineering/college/ov9xbihlri4uuyakze4gqfxov7e969nvm3.png)
![\dot W = 28.6 kW](https://img.qammunity.org/2020/formulas/engineering/college/84m509n4u4tjo37k3mff7vjsi4shvhj2xh.png)