Answer:
v =
m/s
Step-by-step explanation:
The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:
![\overrightarrow{r}=vtcos(\omega t)\hat{x}+vtsin(\omega t)\hat{y}](https://img.qammunity.org/2020/formulas/physics/college/uvqecgd03vdoqc9rckwq4u04iofm496jys.png)
The velocity vector v is the first derivative of the position vector r with respect to time:
![\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}](https://img.qammunity.org/2020/formulas/physics/college/qdds0d9vxlmfha7a10zqyw4m7btsh9lr6i.png)
The given values are:
![t=(x)/(v)=(14)/(3.8)=3.7 s](https://img.qammunity.org/2020/formulas/physics/college/ucxcgswfdmdyt0o6yux9w0fkl2ofvpa5tm.png)
![\omega=(45*2\pi)/(60s)=4.7(1)/(s)](https://img.qammunity.org/2020/formulas/physics/college/2u1ju9ehdr7a20ajx0t68ur34dzwj76dz5.png)