Answer:
-7/25
Explanation:
is in quadrant two given that
is between 90 degrees and 180 degrees.
This means cosine value there is negative and sine value is positive.
Let's use the Pythagorean Identity:
.
![((24)/(25))^2+\cos^2(\theta)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/obbsjhgva7ql14vf0o8yi6mnxaset4yirk.png)
![(576)/(625)+\cos^2(\theta)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mla7wzj5ck8wfaxycyx3bk6jwer0wj0eww.png)
Subtract 576/625 on both sides:
![\cos^2(\theta)=1-(576)/(625)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wzj5d6q9w049lcon2yzizp79kk8bws4tvh.png)
![\cos^2(\theta)=(625-576)/(625)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4irmmgz12nwgydlulv2ewp8243rfdhnne6.png)
![\cos^2(\theta)=(49)/(625)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i2djyyw7th8ke64quh467m5c9l33vu1rc3.png)
Take the square root of both sides:
![\cos(\theta)=\pm (7)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3btpsnobmldpe1pxgej8fv19po8smwogk6.png)
So recall that the cosine value here is negative due to the quadrant we are in.
![\cos(\theta)=-(7)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9ta02fmvenddrsbt1hio5w5jeotuu7awhp.png)
Check:
![((24)/(25))^2+(-(7)/(25))^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dfw1tvlmt7zdu0t3d5yu8taz4mz0hy9ois.png)
![(576+49)/(625)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jt113kgo72t6sigp8x7proy33w18xymbka.png)
![(625)/(625)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8rzu3rzbreb7l0wmdgu3vsvhj2hm49xipl.png)
![1](https://img.qammunity.org/2020/formulas/mathematics/high-school/9le3om235m08z9tnekaif9hldt7bo9f8e4.png)
So we got the desired result since the right hand side of our Pythagorean Identity is 1.