Answer:
The probability that the diameter falls in the interval from 2499 psi to 2510 psi is 0.00798.
Explanation:
Let's define the random variable,
"Comprehensive strength of concrete". We have information that
is normally distributed with a mean of 2500 psi and a standard deviation of 50 psi (or a variance of 2500 psi). In other words,
.
We want to know the probability of the mean of X or
that falls in the interval
. From inference theory we know that :
![\bar{X} \sim N(2500, (2500)/(5)) \Rightarrow \bar{X} \sim N(2500,500)](https://img.qammunity.org/2020/formulas/mathematics/high-school/uu8bopbjcwhmxu9kc41x6a1bias4fhgj1c.png)
Now we can find the probability as follows:
![P(2499 \leq \bar{X} \leq 2510) \Rightarrow P((2499 - 2500)/(500) \leq \frac{\bar{X} - 2500}{500} \leq (2499 - 2500)/(500) ) \Rightarrow\\\Rightarrow P(-0.002 \leq \frac{\bar{X} - 2500}{500} \leq 0.02 ) \Rightarrow P(-0.002 \leq Z \leq 0.02 )](https://img.qammunity.org/2020/formulas/mathematics/high-school/2xe462hsbzoyrfb0xki0roaeyorrg5bcc3.png)
Where
, then:
![P(-0.002 \leq Z \leq 0.02 ) \approx P(0 \leq Z \leq 0.02 ) = P(Z \leq 0.02 ) - P(Z \leq 0) \\P(0 \leq Z \leq 0.02 ) = 0.50798 - 0.5 = 0.00798](https://img.qammunity.org/2020/formulas/mathematics/high-school/bonju8e3zoeqo6ay7uivwnthaunvqamsth.png)