Answer:
All real numbers greater than or equal to 4,999.85 millimeters and less than or equal to 5,000.15 millimeters
Explanation:
Let
x -----> values for the center thickness of the lens
we know that
The absolute value that represent this problem is
![\left|x-5,000\right|\le 0.150](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dow25744dl9rbaua09uzwxm2qgxluxab6q.png)
Solve the absolute value
First case (positive)
![+(x-5,000)\le 0.150](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p4yb927ma9p9v0wrdtzd36z8yob2e3dpld.png)
Adds 5,000 both sides
![x\le 0.150+5,000](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gt4v89na6o3127alapdyf8ahgftkqho3jm.png)
![x\le 5,000.15\ mm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6fek9tzvcgayks3c9fp1fwngfkajee82va.png)
Second case (negative)
![-(x-5,000)\le 0.150](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jzna7v3um5hvjzaaa9levgm9c20mirmsa1.png)
Multiply by -1 both sides
![(x-5,000)\ge -0.150](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6k9p3n0fec5t81gpowpl6vmq3zlwr329w6.png)
Adds 5,000 both sides
![x\ge -0.150+5,000](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a8lkt7zp7ejubectay0643srpwkz6ggyz7.png)
![x\ge 4,999.85\ mm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eo9e3haltttdu7bhpx64m85ob8njcik0n8.png)
therefore
The extreme acceptable values for the center thickness of the lens is the interval [4,999.85,5,000.15]
All real numbers greater than or equal to 4,999.85 millimeters and less than or equal to 5,000.15 millimeters