Answer:
Angular displacement will be 21 rad
So option (b) will be correct answer
Step-by-step explanation:
We have given initial angular velocity
![\omega _i=5rad/sec](https://img.qammunity.org/2020/formulas/physics/high-school/rk16851l8c4wxm9rhzvgg3nn53ket0j8k8.png)
Final angular velocity
![\omega _f=9rad/sec](https://img.qammunity.org/2020/formulas/physics/high-school/poxibz0wjr3x9thsjg9k6ug02txgiz9csb.png)
Time t = 3 sec
Angular acceleration is given by
![\alpha =(\omega _f-\omega _i)/(t)=(9-5)/(3)=1.333rad/sec^2](https://img.qammunity.org/2020/formulas/physics/high-school/ec8e5runraksmq7d05hfuel0imgvpbnwxk.png)
Now angular displacement is given by
![\Theta =\omega _it+(1)/(2)\alpha t^2=5* 3+(1)/(2)* 1.333* 3^2=21rad](https://img.qammunity.org/2020/formulas/physics/high-school/uyknla2l4xc3e87wz3cqtkqk5ijso823ah.png)
So option (b) will be correct option