Answer:
![9x^(4a) -24x^(2a)y^(a) z^(3a) + 16y^(2a) z^(6a)](https://img.qammunity.org/2020/formulas/mathematics/college/gyq2u3zcxwg4cif6cn24v3q52wfu5jfscy.png)
Explanation:
You can follow this steps:
For the expression:
![(3x^(2a) - 4y^(2) z^(3a) )^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/kwguxstkjzu7e4xnzctp1idrdvpb3cucm1.png)
Write the factors:
![(3x^(2a) - 4y^(2) z^(3a) )(3x^(2a) - 4y^(2) z^(3a) )](https://img.qammunity.org/2020/formulas/mathematics/college/ix3jlsbghu84chjtztmqsfcv4upxqrfst2.png)
Now multiply by the term
![3x^(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/pav7z5sva5s2fofqug1fbvvxkb7s0laps9.png)
![(3x^(2a) - 4y^(2) z^(3a) )(3x^(2a) - 4y^(2) z^(3a) ) = 9x^(4a) -12x^(2a) y^(a) z^(3a)](https://img.qammunity.org/2020/formulas/mathematics/college/zowzwv18u41uglmyoqmaaiuanz7j15n5cs.png)
Then multiply by the term
![-4y^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/rampwhifi8f8b2asts7qpt4s1k587e4fjm.png)
![(3x^(2a) - 4y^(2) z^(3a) )(3x^(2a) - 4y^(2) z^(3a) ) = 9x^(4a) -12x^(2a) y^(a) z^(3a) \\\\ <strong> -12x^(2a) y^(a) z^(3a) + 16y^(2a) z^(6a)</strong>](https://img.qammunity.org/2020/formulas/mathematics/college/dcd65rubu3t49ird31fuuobj3jtxdyfz82.png)
Finally add the terms:
![= 9x^(4a) -24x^(2a) y^(a) z^(3a) + 16y^(2a) z^(6a)](https://img.qammunity.org/2020/formulas/mathematics/college/whgqrnfdl6u8ig3w8gl3h19gga58xlt82t.png)
You will need to review the laws for the exponents.
For example:
When you are multiplying with the same base you need to add the exponents.
![x^(2) *x^(5) = x^(2+5) = x^(7)](https://img.qammunity.org/2020/formulas/mathematics/college/o1pix3ir0ogny6bsf0lgczkkaeq3mg9ma5.png)
Power to power, you multiply the exponents but keep the same base:
![(x^(2)y)^3 = (x^(2*3) y^3) = x^(6) y^3](https://img.qammunity.org/2020/formulas/mathematics/college/y1bq41l8727r24ulj64s5fkbwbkn2d0mj4.png)