60.3k views
5 votes
Please help solve this system of equations


\left\{\begin{matrix}\frac{\sqrt[3]{2x+y}}{y}+\frac{\sqrt[3]{2x+y}}{2x}=(81)/(182) \\\frac{\sqrt[3]{2x-y}}{y}-\frac{\sqrt[3]{2x-y}}{2x}=(1)/(182) \end{matrix}\right.

User Nageen
by
8.0k points

1 Answer

5 votes

Make a substitution:


\begin{cases}u=2x+y\\v=2x-y\end{cases}

Then the system becomes


\begin{cases}\frac{2\sqrt[3]{u}}{u-v}+\frac{2\sqrt[3]{u}}{u+v}=(81)/(182)\\\\\frac{2\sqrt[3]{v}}{u-v}-\frac{2\sqrt[3]{v}}{u+v}=\frac1{182}\end{cases}

Simplifying the equations gives


\begin{cases}\frac{4\sqrt[3]{u^4}}{u^2-v^2}=(81)/(182)\\\\\frac{4\sqrt[3]{v^4}}{u^2-v^2}=\frac1{182}\end{cases}

which is to say,


\frac{4\sqrt[3]{u^4}}{u^2-v^2}=\frac{81*4\sqrt[3]{v^4}}{u^2-v^2}


\implies\sqrt[3]{\left(\frac uv\right)^4}=81


\implies\frac uv=\pm27


\implies u=\pm27v

Substituting this into the new system gives


\frac{4\sqrt[3]{v^4}}{(\pm27v)^2-v^2}=\frac1{182}\implies\frac1{v^2}=1\implies v=\pm1


\implies u=\pm27

Then


\begin{cases}x=\frac{u+v}4\\\\y=\frac{u-v}2}\end{cases}\implies x=\pm7,y=\pm13

(meaning two solutions are (7, 13) and (-7, -13))

User Gpichler
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories