Answer:
![\mu = 17.5](https://img.qammunity.org/2020/formulas/mathematics/college/mecgshs8uo0dt0hbvn9r36c5uxlwom5rub.png)
![\sigma = 4](https://img.qammunity.org/2020/formulas/mathematics/college/zxu40osscdyw5yq8ayo8a4b0ti6sextuxp.png)
n = 50
A) show the sampling distribution of x, the sample mean average for a sample of 50 unemployment individuals.
We will use central limit theorem
So, mean of sampling distribution =
![\mu_{\bar{x}}=\mu = 17.5](https://img.qammunity.org/2020/formulas/mathematics/college/ufbbegwxvdx7gt3ee0kijdt3vhm1uw1r8t.png)
Standard deviation of sampling distribution =
![\sigma_{\bar{x}}=(\sigma)/(√(n))= 0.5656](https://img.qammunity.org/2020/formulas/mathematics/college/o0up46hc2xmol16ex9tl4nefi7k6j953zb.png)
B) What is the probability that a simple random sample of 50 unemployment individuals will provide a sample mean within one week of the population mean?
A sample mean within one week of the population mean means
![x-\mu = 1](https://img.qammunity.org/2020/formulas/mathematics/college/3gohmb2x5ez4fin2ezugjp6pkv2cuxl34z.png)
So,
![P(|x-\mu|<1)=P(-1<x-\mu<1)](https://img.qammunity.org/2020/formulas/mathematics/college/ip4diu53jcu2yjze5452pydkpeu33ks9bp.png)
=
![P((-1)/((4)/(√(50)))<(x-\mu)/((\sigma)/(√(n))) <(1)/((4)/(√(50))))](https://img.qammunity.org/2020/formulas/mathematics/college/c0r981u80j6n7fr0pjy56x3dta172wmki5.png)
=
![P(-1.77<Z<1.77](https://img.qammunity.org/2020/formulas/mathematics/college/jjftupohoqlfhwky0dczxtnc4pojthho02.png)
=
![P(z<1.77)-P(z<-1.77)](https://img.qammunity.org/2020/formulas/mathematics/college/9fthcdyjsjtyohkqyxi2ez5cgd3st5wzox.png)
=0.9616-0.0384
=0.9232
The probability that a simple random sample of 50 unemployment individuals will provide a sample mean within one week of the population mean is 0.9232.
C) What is the probability that a simple random sample of 50 unemployed individuals will provide a sample mean within a half week of the population mean?
A sample mean within one week of the population mean means
![x-\mu = 1](https://img.qammunity.org/2020/formulas/mathematics/college/3gohmb2x5ez4fin2ezugjp6pkv2cuxl34z.png)
So,
![P(|x-\mu|<0.5)=P(-0.5<x-\mu<0.5)](https://img.qammunity.org/2020/formulas/mathematics/college/9746ifl920p9n24uzaajfkmmd8ohdkvx18.png)
=
![P((-1-0.5)/((4)/(√(50)))<(x-\mu)/((\sigma)/(√(n))) <(0.5)/((4)/(√(50))))](https://img.qammunity.org/2020/formulas/mathematics/college/beva88pjavy1461jegw0hj9vnxsbreygy7.png)
=
![P(-0.88<Z<0.88](https://img.qammunity.org/2020/formulas/mathematics/college/qfu3jwcl4lskbo947whlsg7l67t5bhw8hu.png)
=
![P(z<0.88)-P(z<0.88)](https://img.qammunity.org/2020/formulas/mathematics/college/5mz7pvdfyj1jxksjwu4r55moanjx5ka8nn.png)
=0.8106-0.1894
=0.6212
The probability that a simple random sample of 50 unemployed individuals will provide a sample mean within a half week of the population mean is 0.6212