Answer:
P(x >16.5) = 0.3372
Step-by-step explanation:
Given data:
P = 0.07
n = 166
Available vegetarian dinner is 16
let
is number of short vegetarian meals
= binomial distribution (166, 0.09)
![np = 166* 0.09 = 14.94](https://img.qammunity.org/2020/formulas/computers-and-technology/college/iebu6k5mxnppwfhf69ozyv8l3ao1wk4y35.png)
n(1-p) = 166(1-0.09) = 151.06
Both value of np and n(1-p) greater than 5
x - normal distribution with
mean = np = 14.94
standard deviation
![= √(np(1-p))](https://img.qammunity.org/2020/formulas/computers-and-technology/college/b1wneib1ybv1xu8rrrrczr5nzseo4uozp5.png)
[/tex]= \sqrt{14.94(1-0.09)}[/tex]
standard deviation = 3.687
Find P(x> 16) i.e P(X>16 ) = P(x >16.5)
P(x >16.5) = 1 - P(x <16.5)
![= 1 - P((x-\mu)/(\sigma) < (16.5 - \mu)/(\sigma)](https://img.qammunity.org/2020/formulas/computers-and-technology/college/cgi0yak1f9ichz0w7xqi2owyyix69x3r6j.png)
![= 1 - P{Z < [(16.5 - 14.94)/(3.67)]](https://img.qammunity.org/2020/formulas/computers-and-technology/college/xi1qwzpy7nsdm86j5nmycqr2fkzlahys4p.png)
= 1 - P{z< 0.425}
= 1 - 0.6628
P(x >16.5) = 0.3372