Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Step-by-step explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:
![ln((P_2)/(P_1)) =-(AH_(vap))/(R) ((1)/(T_2)-(1)/(T_1))](https://img.qammunity.org/2020/formulas/chemistry/college/awfgao9c6ioy7ylrgtgt0z4nwd3kjg2lir.png)
![ln((0.669)/(0.179)) =-(AH_(vap))/(8.3145 J.mol^(-1)K^(-1)) ((1)/(359.15K)-(1)/(323.15K))](https://img.qammunity.org/2020/formulas/chemistry/college/7l7mfbfor2bbkwdgh1o8nptd9g2w1sabkr.png)
![1.3184 =-(AH_(vap))/(8.3145 J.mol^(-1)K^(-1)) (-3.10186*10^(-4)K{^-1})](https://img.qammunity.org/2020/formulas/chemistry/college/fdft45cnb5wp5ezpbqjnd4xp3a3ucc84lw.png)
ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm
![ln((P_2)/(P_1)) =-(AH_(vap))/(R) ((1)/(T_2)-(1)/(T_1))](https://img.qammunity.org/2020/formulas/chemistry/college/awfgao9c6ioy7ylrgtgt0z4nwd3kjg2lir.png)
![ln((1atm)/(0.179atm)) =-(35339.5 J/mol)/(8.3145 J.mol^(-1)K^(-1)) ((1)/(T_2)-(1)/(323.15K))](https://img.qammunity.org/2020/formulas/chemistry/college/frucobeqb4l61wwq64fjxf0q8041qqjqxt.png)
![1.7203=-4250.34 ((1)/(T_2)-(1)/(323.15K))](https://img.qammunity.org/2020/formulas/chemistry/college/rd80xbezy7g7djmhkn6otcn2g2s7fjgv0m.png)
T₂=371.77 K= 98.62 °C