Answer:
10.63 kJ/mol is the
of the reaction.
Step-by-step explanation:
To calculate
of the reaction, we use Van't Hoff's equation, which is:
![\ln ((K_1)/(K_2))=(\Delta H)/(R)[(1)/(T_1)-(1)/(T_2)]](https://img.qammunity.org/2020/formulas/chemistry/college/a9mt55xiwi5nfgxy5zb0db06xbo46vu9dv.png)
where,
= equilibrium constant at
= equilibrium constant at
![T_2](https://img.qammunity.org/2020/formulas/physics/middle-school/6kc1qdxjmxjpe7vod73z28ot0iwnqn2jop.png)
= Enthalpy change of the reaction
R = Gas constant = 8.314 J/mol K
Given :
![K_1=2.60* 10^(-2)](https://img.qammunity.org/2020/formulas/chemistry/college/vn9vxziq54xppv62ixhvfc5l7j1cavxzw1.png)
![K_2=2.68* 10^(-2)](https://img.qammunity.org/2020/formulas/chemistry/college/xye55aas3muwyj6u3y11nkba4sa9kslp7o.png)
= initial temperature =
![1110 K](https://img.qammunity.org/2020/formulas/chemistry/college/uuqfd41z2fyebl6to1v2oimftgyind41ic.png)
= final temperature =
![1140 K](https://img.qammunity.org/2020/formulas/chemistry/college/wwozrgv4dm4mhefn84159p09epty7eihda.png)
= ?
Putting values in above equation, we get:
![\ln((2.68* 10^(-2))/(2.60* 10^(-2)))=(\Delta H)/(8.314J/mol.K)[(1)/(1110 K)-(1)/(1140 K)]](https://img.qammunity.org/2020/formulas/chemistry/college/yw3tdya0020ouzhfisxadlspapsdss7cnt.png)
![\Delta H=10,627.617 J/mol=10.63 kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/jd4o8oecnxwpfxs7rxc4z1ff6z25nct8ym.png)
10.63 kJ/mol is the
of the reaction.