Answer : The pH of the solution is, 4.9
Explanation : Given,
Dissociation constant for acetic acid =
![K_a=1.8* 10^(-5)](https://img.qammunity.org/2020/formulas/chemistry/college/no60u5sxxhgat5y5ks9geh3avc2uv9y19p.png)
Concentration of acetic acid = 0.05 M
Concentration of sodium acetate = 0.075 M
First we have to calculate the value of
.
The expression used for the calculation of
is,
![pK_a=-\log (K_a)](https://img.qammunity.org/2020/formulas/chemistry/high-school/y9z39zqk054fpk15yhpsrgkvxtwf428b4e.png)
Now put the value of
in this expression, we get:
![pK_a=-\log (1.8* 10^(-5))](https://img.qammunity.org/2020/formulas/chemistry/college/4saomfpnv533n6jfwkru8js9no1u9sc6hl.png)
![pK_a=5-\log (1.8)](https://img.qammunity.org/2020/formulas/chemistry/college/kwe61e0z4u7edhwbf8ih44admx4gxxx9aq.png)
![pK_a=4.7](https://img.qammunity.org/2020/formulas/chemistry/college/9va7qhub3c7y4mxfogyip4nof3g7o8a08t.png)
Now we have to calculate the pH of buffer.
Using Henderson Hesselbach equation :
![pH=pK_a+\log ([Salt])/([Acid])](https://img.qammunity.org/2020/formulas/chemistry/college/6wyuhr9b7n0qwlgrnwgg688yylfbvv3wby.png)
![pH=pK_a+\log ([CH_3COONa])/([CH_3COOH])](https://img.qammunity.org/2020/formulas/chemistry/college/koy73tgof7x26myuk57xza5rphisi7b7zj.png)
Now put all the given values in this expression, we get:
![pH=4.7+\log ((0.075)/(0.05))](https://img.qammunity.org/2020/formulas/chemistry/college/pjtialr87z5znf3ojdnutjn7dut3jzoa5l.png)
![pH=4.9](https://img.qammunity.org/2020/formulas/chemistry/college/b4wdpfs1bp4vjozdm9hjeyuo57fsyg3z31.png)
Therefore, the pH of the solution is 4.9.