Step-by-step explanation:
It is given that,
Initial velocity of frog, u = 100 m/s
It jumps at an angle of 60 degrees.
(a) Let
are the x and y components of velocity. It can be calculated as :
![u_x=u\ cos\theta](https://img.qammunity.org/2020/formulas/physics/college/uv5d4yw2va43ugdwglq9r0j8eyred4j7lq.png)
![u_x=100* \ cos(60)](https://img.qammunity.org/2020/formulas/physics/college/djuiv5silolelsgwn9296cygpovsy19pxx.png)
![u_x=50\ m/s](https://img.qammunity.org/2020/formulas/physics/college/cew6jdzb0unwr7husttjrgcj4sr6b3qoyo.png)
![u_y=u\ sin\theta](https://img.qammunity.org/2020/formulas/physics/college/wqu49b9vsdn8rw800xi0knlx60jovi40gw.png)
![u_y=100* \ sin(60)](https://img.qammunity.org/2020/formulas/physics/college/nan77pnr41xtuwzx1nnmt2vo0gf7r9wexn.png)
![u_y=86.6\ m/s](https://img.qammunity.org/2020/formulas/physics/college/7ai08b32oxnmfp6090xb96emopj7z1t826.png)
(b) Let y is the maximum height reached by the frog. It can be calculated using the third equation of motion as :
At maximum height,
![v_y=0](https://img.qammunity.org/2020/formulas/physics/middle-school/g1mh4fohy3960m00mbyz800li5gnu08rm5.png)
and a = -g
![y=(u_y^2)/(2g)](https://img.qammunity.org/2020/formulas/physics/college/apjhi5jwyiy5wkaehsefx566nhm4r8hte6.png)
![y=(86.6^2)/(2* 9.8)](https://img.qammunity.org/2020/formulas/physics/college/h5kdiz50jqlvu0ojk2oavt0do416zg68oi.png)
y = 382.63 meters
(c) Let t is the time taken by the frog to reach its maximum height. It can be calculated as :
![v_y=u_y-gt](https://img.qammunity.org/2020/formulas/physics/college/9teg07nrx79r0pyx7itrx2g7rieqy37gf0.png)
![0=u_y-gt](https://img.qammunity.org/2020/formulas/physics/college/3ut276k9bi8in50g8mh3m0eqp6viomfrq0.png)
![t=(u_y)/(g)](https://img.qammunity.org/2020/formulas/physics/college/r26kekjegncgdkkntmrigilwagmsfnw0rn.png)
t = 8.83 seconds
Hence, this is the required solution.