Answer:
![REF= \left[\begin{array}{ccc}5&-1&1\\0&(-7)/(5) &(-18)/(5)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/ihw0t3r3l7vtdmv81t9kyewto9h7oilezt.png)
![RREF=\left[\begin{array}{ccc}1&0&(5)/(7) \\0&1&(18)/(7)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/entl6xvqekq0ev226hcd7k5j3w51oz3kx9.png)
Explanation:
The augmented matrix of the system is:
![\left[\begin{array}{ccc}5&-1&1\\3&-2&-3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/kkrsdij0l7gjo6mxygif3ufdpo20qir0wx.png)
First we find the stepped form of A (REF):
1. We subtract 3/5 from row 1 to row 2 (R2-
R1) and get the matrix
![\left[\begin{array}{ccc}5&-1&1\\0&(-7)/(5) &(-18)/(5)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/ywjjkh7bdg1i2r6r5ow0kmmc6buhu1bs23.png)
Note that this matrix is in echelon form.
Now we find the reduced row echelon form of the augmented matrix (RREF)
2. From the previous matrix, we multiply the first row by 1/5 and the second row by -5/7 and obtain the matrix:
![\left[\begin{array}{ccc}1&(-1)/(5) &(1)/(5) \\0&1&(18)/(7)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/qqhgm3gi4390u246nm8pnxc31vbr0g9ha4.png)
3. From the previous matrix, to row 1 we add 1/5 of row 2 (R1 +
R2) and we obtain the matrix
![\left[\begin{array}{ccc}1&0&(5)/(7) \\0&1&(18)/(7)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/yctlaljeph1t1oldh0f49c5q8k7mlje6sy.png)
which is the reduced row echelon form of the augmented matrix.