Answer:
The sum of
![2+4+6+8+10+... +200 = 10100](https://img.qammunity.org/2020/formulas/mathematics/college/vstooghq118j7w0m2pq5ymt49vh9gmbjd5.png)
The sum of
![51+52+53+54+...+151 = 10201](https://img.qammunity.org/2020/formulas/mathematics/college/n7vn7i092ej0sr5hoglwgmfrgadidp7gsu.png)
Explanation:
(a) To find the sum of
, take the first and the last number 2 + 200 = 202.
Now that those are accounted for, take the next smallest and largest numbers available: 4 + 198 = 202.
Continuing, 6 + 196 = 202
This repeats 50 times until reaching 50 + 152 = 202.
Since 202 repeats 50 times, the desired sum is 50 x 202 = 10100
Therefore
![2+4+6+8+10+... +200 = 10100](https://img.qammunity.org/2020/formulas/mathematics/college/vstooghq118j7w0m2pq5ymt49vh9gmbjd5.png)
To check the result we can use the formula to sum of the first n even numbers:
where n in our case is 100 because
so
![100 \cdot (100+1)=10100](https://img.qammunity.org/2020/formulas/mathematics/college/iraci7sztotqhf0p3i27pep1sqlnqz2csa.png)
(b) To find the sum of
, do the same in point (a)
51 + 151 = 202
52 + 150 = 202
53 + 149 = 202
Note that there are (151 - 51 + 1 ) = 101 terms
so the sum will be
![(101 \cdot (202))/(2)= 101^2 = 10201](https://img.qammunity.org/2020/formulas/mathematics/college/w1o0eoznsrw55m7qz2yvofv3dwu3u8f6p1.png)
Therefore
![51+52+53+54+...+151 = 10201](https://img.qammunity.org/2020/formulas/mathematics/college/n7vn7i092ej0sr5hoglwgmfrgadidp7gsu.png)