Answer:
y(t) =

Explanation:
We use the Laplace transform in the function y''(t) +2y'(t)+ 5y(t) =50t-150
ℒ{ y''(t) +2y'(t)+ 5y(t)} =ℒ{50t-150}
ℒ{ y''(t)} +2ℒ{y'(t)}+ 5ℒ{y(t)} =ℒ{50t-ℒ{150}
s²·Y(s)-s·y(0)-y'(0)+2s·Y(s)-2·y(0)+5·Y(s)=

s²·Y(s)-s·(-4)-(14)+2s·Y(s)-2·(-4)+5·Y(s)=

Y(s)·(s²+2s+5)+4s-14+8=

Y(s)·(s²+2s+5)=
-4s+6
Y(s)·(s²+2s+5)=

Y(s)=

The new function can also be expressed as partials fractions:
Y(s)=
=

Hence,
)×[s^2(s^2+2s+5)]
50-150s+6s²-4s³=(A+C)s³+(2A+B+D)s²+(5A+2B)s+(5B)
A+C=-4 ⇒ C=-4+34=30
2A+B+D=6 ⇒ D=64
5A+2B=-150 ⇒ A=-34
5B=50 ⇒ B=10
The function Y(s) is:
Y(s)=

30s+64 can be expressed as:
30s+64= 30(s+1)+34
s²+2s+5 can be expressed as:
s²+2s+5=(s²+2s+1)-1+5=(s+1)²+4
Then:
Y(s)=

We use the inverse Laplace transform and find the transformation in the table:
ℒ⁻¹{Y(s}=ℒ⁻¹{
}
y(t)=
