256 views
1 vote
A proton with mass 1.67×10⁻²⁷kg is propelled at an initial speed of 3.00×10⁵m/s directly toward a uranium nucleus 5.00 m away. The proton is repelled by the uranium nucleus with a force of magnitude F=α/x², where is the separation between the two objects and α= 2.12×10⁻²⁶ N•m². Assume that the uranium nucleus remains at rest. What is the speed of the proton when it is 8.00×10⁻¹⁰m from the the uranium nucleus?

1 Answer

2 votes

Answer:


2.4* 10^5 m/s

Step-by-step explanation:

We are given that

Mass of proton=
m_p=1.67* 10^(-27)kg

Initial speed of proton=
v_i=3.00* 10^5 m/s


x_i=-5m


\alpha=2.12* 10^(-26)Nm^2


F=-(\alpha)/(x^2)

Where x is the separation between the two objects.

We have to find the speed of the proton when it is
8.00* 10^(-10) m from the uranium nucleus.

It means we have to find
v_f \;if x_f=-8.00* 10^(-10) m

By work energy theorem

W=
\Delta K.E=\int_(x_i)^(x_f) Fdx

Substitute the values


W=\Delta K.E=\int_(x_i)^(x_f) -(\alpha)/(x^2)dx


W=-\int_(-5)^{-8* 10^(-10)} \alpha x^(-2)dx


W=\alpha[x^(-1)]^{-8* 10^(-10)}_(-5)


W=2.12* 10^(-26)*(-(1)/(8* 10^(-10))+(1)/(5))


W=-2.65* 10^(-17)J


(1)/(2)m(v^2_f-v^2_i)=-2.65* 10^(-17)


(1)/(2)\cdot 1.67* 10^(-27)}(v^2_f-(3* 10^5)^2)=-2.65* 10^(-17)


v^2_f-9* 10^(10)=(2\cdot (-2.65)* 10^(-17))/(1.67* 10^(-27))


V^2_f-9* 10^(10)=-3.17* 10^(10)


v^2_f=-3.17* 10^(10)+9* 10^(10)


v^2_f=5.83* 10^(10)


v_f=\sqrt{5.83* 10^(10)}=2.4* 10^5 m/s

Hence, the speed of proton when it is
8* 10^(-10) m from the uranium nucleus=
v_f=2.4* 10^5 m/s

A proton with mass 1.67×10⁻²⁷kg is propelled at an initial speed of 3.00×10⁵m/s directly-example-1
User Eugenn
by
4.9k points