Answer:
The quadratic function f(x)=15x-76
Solution:
As given in the problem, the two points are
and
![(x_2,y_2) = (0,-76)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ozuudhj44reasrrmsc2hm7852ypb80i7ex.png)
We know the slope
![\mathrm{m}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wdg8f2zzuv67gh07z9tee0gm8i488jb8ol.png)
Now substituting the value of points we get,
![\text { Slope } m=(-76-(-1))/(0-5)=(-76+1)/(-5)=(75)/(5)=15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lrnstu2ekj78zudhvswwpxi2org1qy92jm.png)
We know the equation of a line at a given point
is
![(y-y_1) = m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qegtbh4ywcmtpa4ftsczilsvrytw2penvu.png)
Let us take the point (5,-1) for the equation, then we get
![\Rightarrow(y-(-1)) = m*(x-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2o5og0jfn1dkjy5vtaqg6nqbw329uioo47.png)
Multiplying the signs,
![\Rightarrow(y+1) = 15*(x-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ers7m9kj88q90tnzydyyei7h0hdlqemur0.png)
![\Rightarrow y+1 = 15x- 75](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gs53lback9hs02zu5y8pteimrk3r4s87uy.png)
![\Rightarrow y = 15x -75 -1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/va3untshjppsp2j4otk8dc16yvr1y0x8rq.png)
![\Rightarrow y = 15x -76](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l1uo6iphuc3rmde4en2l682wka0v4lep3y.png)
Hence, the function f(x) is
![y = 15x-76](https://img.qammunity.org/2020/formulas/mathematics/middle-school/80czixan8hdfndjvei6ocwa9l7aqezj8oz.png)