Answer:
x=2
Explanation:
The axis of symmetry can be calculated using the following formula:
![Xv= (-b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/lz42g0mf8c6xkzg4mdqqupqla72rhwkhcg.png)
In order to use this formula, we need to have the function written in it's polynomial formula:
![f(x)=ax^(2) +bx+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bb50bul0ms3hq5tpc653zbwsyk4befyibj.png)
In order to do so, we have to isolate Y from the excercise's formula.
![y=-2(x-2)^2-5](https://img.qammunity.org/2020/formulas/mathematics/college/nal196wep95p1q5cuj2lpdcas05cl24wjb.png)
Then we resolve the square of the binomial knowing that (a+b)^2=a^2+2.a.b+b^2
![(x-2)^2= x^2+2.x.(-2)+(-2)^2](https://img.qammunity.org/2020/formulas/mathematics/college/3zwp2urrzk7a8sztu7sdi7m1lk6cj8vj7e.png)
![(x-2)^2= x^2-4x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9b3g3ukk21xfna27uqbgoxp0fizvslpyh1.png)
Now we have that:
![y=-2.(x^2-4x+4)-5](https://img.qammunity.org/2020/formulas/mathematics/college/uitgem3d0f3vtjyd4jiw6a5x2ci3idjs95.png)
![y=-2x^2+8x-8-5](https://img.qammunity.org/2020/formulas/mathematics/college/eh09shvlguk973sam0xwpttj0c7ysyuuf8.png)
![y=-2x^2+8x-13](https://img.qammunity.org/2020/formulas/mathematics/college/utukx37numoerxi07zo1q6cod2tltb31xd.png)
As we have now the polynomyal formula, we know that a=-2, b=8 and c=-13. We supplant on the formula and get:
![Xv= (-b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/lz42g0mf8c6xkzg4mdqqupqla72rhwkhcg.png)
![Xv= (-8)/(2.(-2))](https://img.qammunity.org/2020/formulas/mathematics/college/yqi5r8zl3n81l7q8q9bdus7ub7p5iiux9z.png)
![Xv= (-8)/(-4))](https://img.qammunity.org/2020/formulas/mathematics/college/93nfm0a6r33inx65as9l3ucuvzoynshqkh.png)
![Xv= 2](https://img.qammunity.org/2020/formulas/mathematics/college/jd60nbhekphddepfa7qzqtz3i41orp36e4.png)