a. The sample space for
has 36 possible outcomes,
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), ...,
(3, 1), (3, 2), ...,
and so on.
b. In the array above, replace each coordinate pair with the absolute difference between the coordinates; you'd end up with an array like
0, 1, 2, 3, 4, 5,
1, 0, 1, 2, 3, 4,
2, 1, 0, 1, 2, 3,
3, 2, 1, 0, 1, 2,
4, 3, 2, 1, 0, 1,
5, 4, 3, 2, 1, 0
so that the sample space for
is the set of integers, {0, 1, 2, 3, 4, 5}.
c. The sample space above illustrates that

so the expected value of
is
![E[Z]=\displaystyle\sum_(z=0)^5z\,P(Z=z)=\frac06+\frac5{18}+\frac49+\frac12+\frac49+\frac5{18}=\boxed{(35)/(18)}](https://img.qammunity.org/2020/formulas/mathematics/college/vcwx4oiou8bye097yis5jvjoshgujj9cup.png)
d. Not sure what you mean by "tabular form", but you can obtain the CDF from the usual definition,
