A quadratic equation
has equal roots if and only if the determinant

equals zero.
In this case,

So, the determinant is
![[4(p-3)]^2-4\cdot (p-3)\cdot 4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2h40timtuse9puz2wy5vbkmnrynq84b11j.png)
Expand the square and multiply terms to get
![[4(p-3)]^2-4\cdot (p-3)\cdot 4=16(p-3)^2-16(p-3) = 16(p-3)[(p-3)-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/23bjviz8ht8nv8klql3c9meodzkrlvi8vi.png)
Which finally simplifies to

This expression equals zero if one of the factors equals zero:
