ANSWER:
The midpoint of AB is M(-5,1). The coordinates of B are (-6, 7)
SOLUTION:
Given, the midpoint of AB is M(-5,1).
The coordinates of A are (-4,-5),
We need to find the coordinates of B.
We know that, mid-point formula for two points A
and B
is given by
![M\left(x_(3), y_(3)\right)=\left((x_(1)+x_(2))/(2), (y_(1)+y_(2))/(2)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fh72665qs8su69ekybigvmq3gj2knld2mj.png)
Here, in our problem,
![\mathrm{x}_(3)=-5, \mathrm{y}_(3)=1, \mathrm{x}_(1)=-4 \text { and } \mathrm{y}_(1)=-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yncp3bs5yymstelsfatl4zflyq7it9rd51.png)
Now, on substituting values in midpoint formula, we get
![(-5,1)=\left((-4+x_(2))/(2), (-5+y_(2))/(2)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4inxr61pft49rz6hmawkv55tgrc4rdsr76.png)
On comparing, with the formula,
![(-4+x_(2))/(2)=-5 \text { and } (-5+y_(2))/(2)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r1bttfb6tuiy5b20aa92ify2i29o0asm8g.png)
![-4+\mathrm{x}_(2)=-10 \text { and }-5+\mathrm{y}_(2)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6xyk5oxwmjzqam9y6kpga28inc1ooonlfo.png)
![\mathrm{x}_(2)=-6 \text { and } \mathrm{y}_(2)=7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/juogs2nfig72mwlbxv2iqv78kp6hp8eje5.png)
Hence, the coordinates of b are (-6, 7).