207k views
0 votes
Triangle ABC has vertices at (-4,0) , (-1, 6) and (3,-1) perimeter of triangle ABC, rounded to the nearest tenth ?

1 Answer

2 votes

Answer:

The perimeter of triangle ABC is
P=21.8\ units

Explanation:

The perimeter of triangle ABC is equal to


P=AB+BC+AC

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

we have


A(-4,0),B(-1, 6),C(3,-1)

step 1

Find the distance AB


A(-4,0),B(-1, 6)

substitute in the formula


d_A_B=\sqrt{(6-0)^(2)+(-1+4)^(2)}


d_A_B=\sqrt{(6)^(2)+(3)^(2)}


d_A_B=√(45)\ units

step 2

Find the distance BC


B(-1, 6),C(3,-1)

substitute in the formula


d_B_C=\sqrt{(-1-6)^(2)+(3+1)^(2)}


d_B_C=\sqrt{(-7)^(2)+(4)^(2)}


d_B_C=√(65)\ units

step 3

Find the distance AC


A(-4,0),C(3,-1)

substitute in the formula


d_A_C=\sqrt{(-1-0)^(2)+(3+4)^(2)}


d_A_C=\sqrt{(-1)^(2)+(7)^(2)}


d_A_C=√(50)\ units

step 4

Find the perimeter


P=AB+BC+AC

substitute the values


P=√(45)+√(65)+√(50)=21.8\ units

User Endemic
by
8.0k points