Answer:
(a) f(x) is a valid density function.
(b)
![F(x)=\left \{ {1-x^(-3)}\qquad {\:x \:> \:1} \atop {0}\quad\qquad{elsewhere} \right](https://img.qammunity.org/2020/formulas/mathematics/college/n0qwqeb5fpx526wx31ki3ptt24w1y10lhn.png)
(c) The probability that a random particle from the manufactured fuel exceeds 4 micrometers is
.
Explanation:
We know the particle size (in micrometers) distribution is characterized by
![f(x)=\left \{ {{3x^(-4)}\quad {if \:x \:> \:1} \atop {0}\quad{\:elsewhere} \right.](https://img.qammunity.org/2020/formulas/mathematics/college/u09vllkukn6g4nrc9xp4wnj67kakcfw6nx.png)
(a) For f(x) to be a legitimate probability density function, it must satisfy the following two conditions:
for all x
area under the entire graph of f(x) = 1
It holds that
for all
and
![\int\limits^(\infty)_(-\infty) {f(x)} \, dx = \int\limits^(\infty)_(-\infty) {3x^(-4)} \, dx=\int\limits^(\infty)_(1) {3x^(-4)} \, dx \\\\\int\limits^(\infty)_(1) {3x^(-4)} \, dx = [-x^(-3)]_(\infty)^(1)} \right = 0-(-1)=1](https://img.qammunity.org/2020/formulas/mathematics/college/m2b80gsa87muf7mhsmrq5x9pxxfxoa2dxi.png)
Therefore f(x) is a valid density function.
(b) The cumulative distribution function (CDF) F(x) for a continuous rv X is defined for every number x by
![F(x)= P(X\leq x)=\int\limits^x_(-\infty) {f(y)} \, dy](https://img.qammunity.org/2020/formulas/mathematics/college/7wznzrhkcy8k0a4uwu8myy1aitg4vfngkt.png)
Applying the CDF definition we get:
For
F(x) = 0, while for
![\int\limits^x_(-\infty) {f(y)} \, dy=\int\limits^x_(-\infty) {3y^(-4)} \, dy=\int\limits^x_(1) {3y^(-4)} \, dy\\\\\int\limits^x_(1) {3y^(-4)} \, dy=[-y^(-3)]_(1)^(x)} \right=1-x^(-3)](https://img.qammunity.org/2020/formulas/mathematics/college/p6vnstacias0dawibri2g344fztke47zsa.png)
Because f(x) is a piece-wise function, we have
![F(x)=\left \{ {1-x^(-3)}\qquad {\:x \:> \:1} \atop {0}\quad\qquad{elsewhere} \right](https://img.qammunity.org/2020/formulas/mathematics/college/n0qwqeb5fpx526wx31ki3ptt24w1y10lhn.png)
(c) To find the probability that a random particle from the manufactured fuel exceeds 4 micrometers, you need to use the CDF,
![P(X>4)=1-P(X\leq 4)=1-F(4)=1-(1-4^(-3))=4^(-3)=0.0156](https://img.qammunity.org/2020/formulas/mathematics/college/av1gdp1mqxyksb6e089dehc3tw56m50279.png)