167k views
5 votes
Factor over complex numbers 2x^4+36x^2+162

User Paolostyle
by
5.5k points

1 Answer

1 vote

Answer:

Factor over complex numbers of
2 x^(4)+36 x^(2)+162 is
2(x+3 i)^(2)(x-3 i)^(2)

Solution:

From question given that


2 x^(4)+36 x^(2)+162 → (1)

On substituting
x^(2)=y in equation (1),


=2 y^(2)+36 y+162

Taking 2 as a common in above expression,


=2\left(y^(2)+18 y+81\right)

Rewrite the above expression,


=2\left[y^(2)+2(y)(9)+9^(2)\right]


=2(y+9)^(2)
\left[\text { Using }(a+b)^(2)=a^(2)+2 a b+b^(2)\right]


=2\left(x^(2)+9\right)^(2)
\left[\text { since } y=x^(2)\right]


\left[\text { Using } a^(2)+b^(2)=(a+i b)(a-i b), \text { where } i=√(-1)\right]


=2[(x+3 i)(x-3 i)]^(2)


=2(x+3 i)^(2)(x-3 i)^(2)

Hence Factor over complex numbers of
2 x^(4)+36 x^(2)+162 is
2(x+3 i)^(2)(x-3 i)^(2)

User Alysonsm
by
5.3k points