Answer:
The equation of a line which passes through the points (-2,3) and (2,0) is
![3 x+4 y=6 \text { or } y=-(3 x)/(4)+(3)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ih9tyq46nq1kxa0n97dswaai07bhj9l3mf.png)
Solution:
Let us assume that the
and
![(x_1, y_1) = (-2,3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1em8h86yguqn406kj1uy7ku4pzd4g8bfst.png)
The slope of the line m is
![=(y_2-y_1)/(x_2-x_1)=(0-3)/(2-(-2))=\left(-(3)/(4)\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zzru1iqaim5cmha0y78ixouvrrgajb0nw8.png)
We know the equation of a line at a given point
is
![(y-y_1) = m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qegtbh4ywcmtpa4ftsczilsvrytw2penvu.png)
Let me take the point (2,0) here,
So the equation of the line is
![\Rightarrow(y-0)=\left(-(3)/(4)\right)(x-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/40ys25x36ea1q3j408iq7v89mzdn6umrwt.png)
![\Rightarrow y=\left(-(3)/(4)\right)(x-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dvc6qyo1m2rdh0j842xxpokiszf06qnd10.png)
![\Rightarrow 4 y=(-3) *(x-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4thm65kbyxcl7k9d8ajqi80lhmb7xcmo5r.png)
![\Rightarrow 4 y=-3 x+6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ga02wm4svjxsmrswri336b14a43o03ppyb.png)
or
![y=-(3 x)/(4)+(3)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m1e9b71txsdjhmg3nsqk899g2idvp7yneo.png)
So, the equation is
![3 x+4 y=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wi0n8th88h7ihzvczf8dh1i7foo46l0d8d.png)
Or
![y=-(3 x)/(4)+(3)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m1e9b71txsdjhmg3nsqk899g2idvp7yneo.png)